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On Forcing Functions in Kauffman's 
Random Boolean Networks 
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The phase transition between frozen and chaotic behavior in Kauffman's 
cellular automata on a nearest neighbor square lattice does not agree with the 
percolation threshold of the forcing functions. 
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In cellular automata/l)  the value at time t +  1 of a "spin" or other local 
variable depends deterministically on the values at time t of the spin values 
for K neighbors in the lattice; for example, K =  4 on the square lattice with 
nearest neighbor connections, if we ignore the direct influence of a spin on 
itself. If each spin has only two orientations, it is also called a Boolean 
variable and takes the values T R U E  or FALSE. We have M =  2 K different 
configurations for the K Boolean neighbors, and thus 2 M possible rules for 
how to change a spin; this amounts to 65,536 different functions for cellular 
automata  with K = 4. 

The Kauffman model (2~ is a random mixture of these 2 (2~ cellular 
automata  rules: at each lattice site one chooses randomly which of the 2 M 
rules applies to it, and then sticks with that initial choice for the whole 
evolution. The model was invented (2) to simulate the genetic aspects of life, 
with the single spins corresponding to genes, each of which can be turned 
on or off. Turning off a gene can be caused by repressor molecules influen- 
ced by K other genes. The time evolution of this irreversible Kauffman 
automaton may or may not lead to periodic oscillations of the spins, which 
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we call limit cycles. Different limit cycles may represent different types of 
living cells. To be a good model for life, the Kauffman model should be 
rather stable against "mutations," i.e., a random change of a few spin orien- 
tations should lead to limited damage only, with the total number of spins 
changed by this mutation approaching for t ~ oo a limit proportional to 
the initial changes. Cases with such built-in damage limitation are called 
"frozen, ''~3) as opposed to the "chaotic" case, where small perturbations 
may lead to a large final change independent of the small amount of initial 
change.(3) 

Much early research (2) concentrated on infinite ranges of connection, 
where the K neighbors are chosen randomly from all the sites of the 
system, independent of their distance. For large systems, this "infinite- 
dimension" limit can be solved exactly (3'4/ since then it does not matter if 
the rules stay fixed throughout the time development or change after every 
time step/4) More recently, ~3"5~ on the square lattice with only nearest 
neighbor connections a transition from frozen to chaotic behavior was 
observed numerically at a threshold Pc - 0.26 if the Boolean rules for each 
site are chosen randomly such that a fraction p gives TRUE and a fraction 
1 - p gives FALSE. For  p < Pc one observes frozen behavior; for p > Pc one 
sees chaos with an unlimited growth of small perturbations, with limit cycle 
periods increasing exponentially with system size, and with percolation of 
an infinite cluster of oscillating spins. (3'5/ 

For these numerical investigations with finite connection range one 
would like to have a theoretical criterion, independent of the time develop- 
ment, where the transition to chaos will occur. It has long been 
suggested (2"6) that forcing functions play a crucial role in preventing chaotic 
behavior. A rule for cellular automata is called forcing, or canalizing, if at 
least one of its K arguments has the property that the result of the function 
is already fixed if this argument has one particular value, regardless of the 
values for the K - 1  other arguments. For  example, the Boolean AND 
function for K =  2 is forcing, since it is always FALSE if the first argument 
is FALSE. On the other hand, the Boolean EQUIVALENCE function is 
not forcing, since we need to know both arguments to decide if they are 
equal, i.e., if EQUIVALENCE is TRUE. Particularly important for p ~ 1 
is the T A U T O L O G Y  forcing function, which is always TRUE independent 
of its arguments; the forcing function CONTRADICTION,  which always 
gives FALSE, dominates for p ~ 0. The larger K is, the smaller is the frac- 
tion of forcing functions(2); Fogelman (v) listed them for K =  3. It would be 
nice if the phase transition between frozen and chaotic behavior would be 
connected with the percolation threshold of an infinite cluster of neighbor- 
ing forcing functions. Since the functions are selected randomly apart from 
the bias connected with the probability p, the phase transition would then 
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coincide with the random site percolation threshold, (8~ which appears if 
59.275% of all sites of the square lattice are forcing functions (69.6% for 
the honeycomb lattice, K =  3; 50% for the triangular lattice, K--6).  We 
now test this possibility that the concept of forcing functions allows a 
determination of the phase transition point via a known threshold of ran- 
dom percolation. 

Thus we evaluated, similar to series expansions of critical points, how 
the fraction ~r of forcing functions, among all functions on the lattice, 
depends on the fraction p of TRUE functions selected for that lattice ran- 
domly. For K =  2, of the 16 possible functions, only two are not forcing: 
EQUIVALENCE and its conjugate EXCLUSIVE-OR. The rule 
EQUIVALENCE appears with probability p2(1 _p)2, since of the M =  
2 ~ = 4  neighbor configurations, two give the result TRUE and the other 
two give the result FALSE. The same contribution comes from the function 
EXCLUSIVE-OR; thus, 

zc= 1 - 2 p 2 ( 1 - p ) 2  ( K = 2 )  (1) 

For general K, each function gives for the M different neighbor con- 
figurations m times the value TRUE and M - m  times the value FALSE; it 
is thus selected with probability pmqM-m, where q = 1 -- p. If there are N,, 
different functions, among the 2 M possible rules, that give exactly m times 
TRUE and are forcing, the total probability ~ for the randomly selected 
function to be forcing is 

M 

~= ~ NmpmqM m (2) 
m = 0  

Note that the Nm and thus Eq. (2) are independent of any lattice structure 
or dimensionality and depend only on K. 

A simple computer program checked within 4 min on a microcom- 
puter all 16, 256, and 65,536 possible rules for K =  2, 3, and 4, respectively; 
determined if they were forcing; if yes, calculated the number m of its 
TRUE results; and in this way determined the numbers N m of forcing 
functions with m out of M = 2 ~ results TRUE. We thus found 

~z(K= 2) =p4 + 4p3q + 4p2q2 + 4pq3 + q4 (3a) 

~ (K=  3) =p8 + 8p7q+ 24p6q2 + 24pSq3 + 6p4q4 

+ 24p3q5 + 24p2q6 + 8pq7 + q8 (3b) 

~r(K= 4) =p16 + 16plSq + 112p14q2 + 352p~3q3 + 536pX2q4 + 448pllq5 

+ 224pl~ 6 + 64p9q 7 + 8pSq 8 + 64pTq 9 + 224p6q I~ + 448pSq '1 

+ 536p4q 12 + 352p3q 13 + 112pZq ~4 + 16pql5 + q~6 (3c) 



792 Stauf fer  

By definition the polynomials are symmetric about p = l / 2 .  The 
probabilities pM correspond to TAUTOLOGY,  the last terms qM to CON- 
TRADICTION. Note the bimodal structure for K >  2 in the Nm: Forcing 
functions like to have a high degree of internal homogeneity, m) which 
means usually most of the M function values are TRUE or most of them 
are FALSE, if the function is forcing. Table I gives numerical results for the 
reader's convenience. 

We see that for K =  3 the probability ~ reaches the site percolation 
threshold 0.6962 of the honeycomb lattice at p = 0.278, consistent with a 
preliminary Monte Carlo simulation of the Kauffman model on that lattice 
(p, about 0.3). However, for K =  4 the concept of forcing functions works 
less well: ~z reaches the square site percolation threshold 0.59275 already at 
p=0.192,  far below the numerical {3'5) estimates pc = 0.26 _+ 0.02 and 
0.26___ 0.01 for the transition to chaos in the Kauffman model on square 
lattices. Thus, for p between 19 and 26 % we still have frozen behavior and 
no chaos, even though the forcing functions no longer form a connected 
network of neighboring lattice sites. (For the square lattice the transition to 
chaos agrees well with the percolation threshold for the nonforcing 
functions, i.e., 1 -7 t=0.59275;  but such an identification fails to work in 
the honeycomb lattice, where the nonforcing functions never percolate, 

Table I. Probabi l i ty ~, Eq. (3 ) ,  of  a Randomly  
Selected Boolean Function to Be Forcing 

If These Boolean Functions Give TRUE 
w i th  Probabi l i ty p and FALSE 

wi th  Probabi l i ty 1 - p  a 

p K = 2  K = 3  K = 4  

0 1 1 1 
0.05 0.9955 0.9892 0.9718 
0.10 0.9838 0.9554 0.8770 
0.15 0.9675 0.8997 0.7313 
0.20 0.9488 0.8268 0.5655 
0.25 0.9297 0.7440 0.4072 
0.30 0.9118 0.6599 0.2739 
0.35 0.8965 0.5832 0.1730 
0.40 0.8848 0.5219 0.1048 
0.45 0.8775 0.4824 0.0661 
0.50 0.8750 0.46875 0.0536 

a In total we have 14, 120, and 3514 forcing functions among the 
16, 256, and 65,536 possible rules for K = 2 ,  3, and 4, respec- 
tively. For p > 1/2, rc is the same as for 1 - p. 
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since 1 - r c  is never larger than 0.53125 = 17/32, far below the percolation 
threshold of 0.69.) Thus, the old definition (z) of forcing functions has to be 
generalized if their percolation threshold is to coincide with the transition 
to chaos on the nearest neighbor square lattice. 

Hartman and Vichniac (6) took a different approach to the connection 
of forcing functions, percolation, and chaos in the Kauffman model on a 
square lattice ( K =  4). Instead of working with all possible 2 M rules, they 
selected one forcing and one nonforcing function, and mixed these two ran- 
domly. They find agreement between the percolation threshold 0.59275 and 
the phase transition limiting the growth of damage, and thus support 
Kauffman's concept of the importance of forcing functions. 

However, one can also find a counterexample with two nonforcing 
functions that nevertheless still give a transition from frozen to chaotic 
behavior. We take with probability p the rule that gives TRUE iff an even 
number of neighbors is TRUE on the nearest neighbor square lattice. For 
the other lattice sites, i.e., with probability 1 -  p, we take the rule that is 
TRUE iff at most two of the four neighbors are TRUE. The earlier sym- 
metry of p and 1 - p  now is no longer valid. For  both functions the 
knowledge of one neighbor spin does not yet determine the outcome, since 
we need to know the total number of TRUE neighbors; thus, not a single 
site carries a forcing function. Nevertheless, for p = 0, i.e., using the second 
function only, one has a checkerboard distribution of spin orientations as a 
time-independent solution of this rule, and the flipping of one spin only 
causes this spin to fall back to its original checkerboard orientation in the 
next time step. Thus, we are in the frozen phase. With the first function 
only, i.e., for p = 1, a time-independent solution is reached if all sites are 
TRUE. Turning one of the spins in this configuration causes numerous 
neighbors to be flipped later, with the distance between the spins flipped 
later and the originally flipped spin increasing linearly with time. Thus, the 
damage can spread over the whole lattice, which corresponds to chaotic 
behavior. Thus, we have a frozen situation at p = 0 and chaos at p = 1; a 
simple Monte Carlo simulation (with a random initial spin distribution) 
suggested a phase transition near p = 1/4. This transition cannot be connec- 
ted with forcing functions, since there are none in this example. 

In summary, the definition of forcing functions needs to be generalized 
if their percolation threshold is supposed to coincide with the dynamical 
transition to chaos in the Kauffman model. The more complicated forcing 
domains of Fogelman (7) might be a possibility, but seem no longer 
equivalent to a random percolation process. 
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NOTE A D D E D  IN PROOF 

Better  s imula t ions  (D. Stauffer, Bar I lan Conference,  P h i l  Mag. ,  to be 
publ i shed)  of the Kauf fman  model  gave chaos  above  p = 0.28 ( instead of 
p = 0.26) on the square lat t ice but  no chaos  on the h o n e y c o m b  lattice. Thus 
the agreement  between the onset  of chaos and the pe rco la t ion  of nonforc-  
ing functions seems worse on the square  lattice; on the h o n e y c o m b  lattice, 
where nonforc ing  functions never percolate ,  we now have always a frozen 
phase. 
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